Two-sample test based on Self-Organizing Maps

12/17/2022
by   Alejandro Alvarez-Ayllon, et al.
0

Machine-learning classifiers can be leveraged as a two-sample statistical test. Suppose each sample is assigned a different label and that a classifier can obtain a better-than-chance result discriminating them. In this case, we can infer that both samples originate from different populations. However, many types of models, such as neural networks, behave as a black-box for the user: they can reject that both samples originate from the same population, but they do not offer insight into how both samples differ. Self-Organizing Maps are a dimensionality reduction initially devised as a data visualization tool that displays emergent properties, being also useful for classification tasks. Since they can be used as classifiers, they can be used also as a two-sample statistical test. But since their original purpose is visualization, they can also offer insights.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro