Two-sample tests for repeated measurements of histogram objects with applications to wearable device data

06/24/2021
by   Jingru Zhang, et al.
0

Repeated observations have become increasingly common in biomedical research and longitudinal studies. For instance, wearable sensor devices are deployed to continuously track physiological and biological signals from each individual over multiple days. It remains of great interest to appropriately evaluate how the daily distribution of biosignals might differ across disease groups and demographics. Hence these data could be formulated as multivariate complex object data such as probability densities, histograms, and observations on a tree. Traditional statistical methods would often fail to apply as they are sampled from an arbitrary non-Euclidean metric space. In this paper, we propose novel non-parametric graph-based two-sample tests for object data with repeated measures. A set of test statistics are proposed to capture various possible alternatives. We derive their asymptotic null distributions under the permutation null. These tests exhibit substantial power improvements over the existing methods while controlling the type I errors under finite samples as shown through simulation studies. The proposed tests are demonstrated to provide additional insights on the location, inter- and intra-individual variability of the daily physical activity distributions in a sample of studies for mood disorders.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset