UIPC-MF: User-Item Prototype Connection Matrix Factorization for Explainable Collaborative Filtering

08/14/2023
by   Lei Pan, et al.
0

Recommending items to potentially interested users has been an important commercial task that faces two main challenges: accuracy and explainability. While most collaborative filtering models rely on statistical computations on a large scale of interaction data between users and items and can achieve high performance, they often lack clear explanatory power. We propose UIPC-MF, a prototype-based matrix factorization method for explainable collaborative filtering recommendations. In UIPC-MF, both users and items are associated with sets of prototypes, capturing general collaborative attributes. To enhance explainability, UIPC-MF learns connection weights that reflect the associative relations between user and item prototypes for recommendations. UIPC-MF outperforms other prototype-based baseline methods in terms of Hit Ratio and Normalized Discounted Cumulative Gain on three datasets, while also providing better transparency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset