Uncertainty-based quality assurance of carotid artery wall segmentation in black-blood MRI

by   Elina Thibeau-Sutre, et al.

The application of deep learning models to large-scale data sets requires means for automatic quality assurance. We have previously developed a fully automatic algorithm for carotid artery wall segmentation in black-blood MRI that we aim to apply to large-scale data sets. This method identifies nested artery walls in 3D patches centered on the carotid artery. In this study, we investigate to what extent the uncertainty in the model predictions for the contour location can serve as a surrogate for error detection and, consequently, automatic quality assurance. We express the quality of automatic segmentations using the Dice similarity coefficient. The uncertainty in the model's prediction is estimated using either Monte Carlo dropout or test-time data augmentation. We found that (1) including uncertainty measurements did not degrade the quality of the segmentations, (2) uncertainty metrics provide a good proxy of the quality of our contours if the center found during the first step is enclosed in the lumen of the carotid artery and (3) they could be used to detect low-quality segmentations at the participant level. This automatic quality assurance tool might enable the application of our model in large-scale data sets.


page 3

page 7


Deep Learning-Based Carotid Artery Vessel Wall Segmentation in Black-Blood MRI Using Anatomical Priors

Carotid artery vessel wall thickness measurement is an essential step in...

Bayesian QuickNAT: Model Uncertainty in Deep Whole-Brain Segmentation for Structure-wise Quality Control

We introduce Bayesian QuickNAT for the automated quality control of whol...

Inherent Brain Segmentation Quality Control from Fully ConvNet Monte Carlo Sampling

We introduce inherent measures for effective quality control of brain se...

Measuring uncertainty when pooling interval-censored data sets with different precision

Data quality is an important consideration in many engineering applicati...

Automated Quality Control in Image Segmentation: Application to the UK Biobank Cardiac MR Imaging Study

Background: The trend towards large-scale studies including population i...

A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation

Quality control (QC) of MR images is essential to ensure that downstream...

Accuracy, Uncertainty, and Adaptability of Automatic Myocardial ASL Segmentation using Deep CNN

PURPOSE: To apply deep convolutional neural networks (CNN) to the left v...

Please sign up or login with your details

Forgot password? Click here to reset