Uncertainty relations and fluctuation theorems for Bayes nets

11/07/2019
by   David H. Wolpert, et al.
17

The pioneering paper [Ito and Sagawa, 2013] analyzed the non-equilibrium statistical physics of a set of multiple interacting systems, S, whose joint discrete-time evolution is specified by a Bayesian network. The major result of [Ito and Sagawa, 2013] was an integral fluctuation theorem (IFT) governing the sum of two quantities: the entropy production (EP) of an arbitrary single v in S, and the transfer entropy from v to the other systems. Here I extend the analysis in [Ito and Sagawa, 2013]. I derive several detailed fluctuation theorems (DFTs), concerning arbitrary subsets of all the systems (including the full set). I also derive several associated IFTs, concerning an arbitrary subset of the systems, thereby extending the IFT in [Ito and Sagawa, 2013]. In addition I derive "conditional" DFTs and IFTs, involving conditional probability distributions rather than (as in conventional fluctuation theorems) unconditioned distributions. I then derive thermodynamic uncertainty relations relating the total EP of the Bayes net to the set of all the precisions of probability currents within the individual systems. I end with an example of that uncertainty relation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro