Uncovering the Local Hidden Community Structure in Social Networks

by   Meng Wang, et al.
Huazhong University of Science u0026 Technology
cornell university

Hidden community is a useful concept proposed recently for social network analysis. To handle the rapid growth of network scale, in this work, we explore the detection of hidden communities from the local perspective, and propose a new method that detects and boosts each layer iteratively on a subgraph sampled from the original network. We first expand the seed set from a single seed node based on our modified local spectral method and detect an initial dominant local community. Then we temporarily remove the members of this community as well as their connections to other nodes, and detect all the neighborhood communities in the remaining subgraph, including some "broken communities" that only contain a fraction of members in the original network. The local community and neighborhood communities form a dominant layer, and by reducing the edge weights inside these communities, we weaken this layer's structure to reveal the hidden layers. Eventually, we repeat the whole process and all communities containing the seed node can be detected and boosted iteratively. We theoretically show that our method can avoid some situations that a broken community and the local community are regarded as one community in the subgraph, leading to the inaccuracy on detection which can be caused by global hidden community detection methods. Extensive experiments show that our method could significantly outperform the state-of-the-art baselines designed for either global hidden community detection or multiple local community detection.


page 1

page 2

page 3

page 4


Hidden Community Detection in Social Networks

We introduce a new paradigm that is important for community detection in...

Community detection and Social Network analysis based on the Italian wars of the 15th century

In this contribution we study social network modelling by using human in...

Local communities obstruct global consensus: Naming game on multi-local-world networks

Community structure is essential for social communications, where indivi...

GI-OHMS: Graphical Inference to Detect Overlapping Communities

Discovery of communities in complex networks is a topic of considerable ...

Local Motif Clustering via (Hyper)Graph Partitioning

A widely-used operation on graphs is local clustering, i.e., extracting ...

Community evolution in retweet networks

Communities in social networks often reflect close social ties between t...

Structure Amplification on Multi-layer Stochastic Block Models

Much of the complexity of social, biological, and engineered systems ari...

Please sign up or login with your details

Forgot password? Click here to reset