Unified Question Generation with Continual Lifelong Learning

by   Wei Yuan, et al.

Question Generation (QG), as a challenging Natural Language Processing task, aims at generating questions based on given answers and context. Existing QG methods mainly focus on building or training models for specific QG datasets. These works are subject to two major limitations: (1) They are dedicated to specific QG formats (e.g., answer-extraction or multi-choice QG), therefore, if we want to address a new format of QG, a re-design of the QG model is required. (2) Optimal performance is only achieved on the dataset they were just trained on. As a result, we have to train and keep various QG models for different QG datasets, which is resource-intensive and ungeneralizable. To solve the problems, we propose a model named Unified-QG based on lifelong learning techniques, which can continually learn QG tasks across different datasets and formats. Specifically, we first build a format-convert encoding to transform different kinds of QG formats into a unified representation. Then, a method named STRIDER (SimilariTy RegularIzed Difficult Example Replay) is built to alleviate catastrophic forgetting in continual QG learning. Extensive experiments were conducted on 8 QG datasets across 4 QG formats (answer-extraction, answer-abstraction, multi-choice, and boolean QG) to demonstrate the effectiveness of our approach. Experimental results demonstrate that our Unified-QG can effectively and continually adapt to QG tasks when datasets and formats vary. In addition, we verify the ability of a single trained Unified-QG model in improving 8 Question Answering (QA) systems' performance through generating synthetic QA data.


page 1

page 2

page 3

page 4


Can NLI Models Verify QA Systems' Predictions?

To build robust question answering systems, we need the ability to verif...

Unsupervised Question Answering by Cloze Translation

Obtaining training data for Question Answering (QA) is time-consuming an...

Bridging the Language Gap: Knowledge Injected Multilingual Question Answering

Question Answering (QA) is the task of automatically answering questions...

ListReader: Extracting List-form Answers for Opinion Questions

Question answering (QA) is a high-level ability of natural language proc...

A Multi-Format Transfer Learning Model for Event Argument Extraction via Variational Information Bottleneck

Event argument extraction (EAE) aims to extract arguments with given rol...

Ask Question First for Enhancing Lifelong Language Learning

Lifelong language learning aims to stream learning NLP tasks while retai...

A BERT-based Distractor Generation Scheme with Multi-tasking and Negative Answer Training Strategies

In this paper, we investigate the following two limitations for the exis...

Please sign up or login with your details

Forgot password? Click here to reset