Uniform Deviation Bounds for Unbounded Loss Functions like k-Means

02/27/2017
by   Olivier Bachem, et al.
0

Uniform deviation bounds limit the difference between a model's expected loss and its loss on an empirical sample uniformly for all models in a learning problem. As such, they are a critical component to empirical risk minimization. In this paper, we provide a novel framework to obtain uniform deviation bounds for loss functions which are *unbounded*. In our main application, this allows us to obtain bounds for k-Means clustering under weak assumptions on the underlying distribution. If the fourth moment is bounded, we prove a rate of O(m^-1/2) compared to the previously known O(m^-1/4) rate. Furthermore, we show that the rate also depends on the kurtosis - the normalized fourth moment which measures the "tailedness" of a distribution. We further provide improved rates under progressively stronger assumptions, namely, bounded higher moments, subgaussianity and bounded support.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset