Universal Framework for Parametric Constrained Coding
Constrained coding is a fundamental field in coding theory that tackles efficient communication through constrained channels. While channels with fixed constraints have a general optimal solution, there is increasing demand for parametric constraints that are dependent on the message length. Several works have tackled such parametric constraints through iterative algorithms, yet they require complex constructions specific to each constraint to guarantee convergence through monotonic progression. In this paper, we propose a universal framework for tackling any parametric constrained-channel problem through a novel simple iterative algorithm. By reducing an execution of this iterative algorithm to an acyclic graph traversal, we prove a surprising result that guarantees convergence with efficient average time complexity even without requiring any monotonic progression. We demonstrate the effectiveness of this universal framework by applying it to a variety of both local and global channel constraints. We begin by exploring the local constraints involving illegal substrings of variable length, where the universal construction essentially iteratively replaces forbidden windows. We apply this local algorithm to the minimal periodicity, minimal Hamming weight, local almost-balanced Hamming weight and the previously-unsolved minimal palindrome constraints. We then continue by exploring global constraints, and demonstrate the effectiveness of the proposed construction on the repeat-free encoding, reverse-complement encoding, and the open problem of global almost-balanced encoding. For reverse-complement, we also tackle a previously-unsolved version of the constraint that addresses overlapping windows. Overall, the proposed framework generates state-of-the-art constructions with significant ease while also enabling the simultaneous integration of multiple constraints for the first time.
READ FULL TEXT