Unsupervised Anomaly Detection From Semantic Similarity Scores

12/01/2020
by   Nima Rafiee, et al.
0

In this paper, we present SemSAD, a simple and generic framework for detecting examples that lie out-of-distribution (OOD) for a given training set. The approach is based on learning a semantic similarity measure to find for a given test example the semantically closest example in the training set and then using a discriminator to classify whether the two examples show sufficient semantic dissimilarity such that the test example can be rejected as OOD. We are able to outperform previous approaches for anomaly, novelty, or out-of-distribution detection in the visual domain by a large margin. In particular, we obtain AUROC values close to one for the challenging task of detecting examples from CIFAR-10 as out-of-distribution given CIFAR-100 as in-distribution, without making use of label information

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset