Unsupervised Domain Adaptation for Semantic Segmentation using One-shot Image-to-Image Translation via Latent Representation Mixing

12/07/2022
by   Sarmad F. Ismael, et al.
0

Domain adaptation is one of the prominent strategies for handling both domain shift, that is widely encountered in large-scale land use/land cover map calculation, and the scarcity of pixel-level ground truth that is crucial for supervised semantic segmentation. Studies focusing on adversarial domain adaptation via re-styling source domain samples, commonly through generative adversarial networks, have reported varying levels of success, yet they suffer from semantic inconsistencies, visual corruptions, and often require a large number of target domain samples. In this letter, we propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images, that i) leads to semantically consistent and noise-free images, ii) operates with a single target domain sample (i.e. one-shot) and iii) at a fraction of the number of parameters required from state-of-the-art methods. More specifically an image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains, and a perceptual network module and loss function is further introduced to enforce semantic consistency. Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods. Our source code will be available at <https://github.com/Sarmadfismael/LRM_I2I>.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset