Upward Partitioned Book Embeddings

08/22/2017
by   Hugo A. Akitaya, et al.
0

We analyze a directed variation of the book embedding problem when the page partition is prespecified and the nodes on the spine must be in topological order (upward book embedding). Given a directed acyclic graph and a partition of its edges into k pages, can we linearly order the vertices such that the drawing is upward (a topological sort) and each page avoids crossings? We prove that the problem is NP-complete for k> 3, and for k> 4 even in the special case when each page is a matching. By contrast, the problem can be solved in linear time for k=2 pages when pages are restricted to matchings. The problem comes from Jack Edmonds (1997), motivated as a generalization of the map folding problem from computational origami.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro