Using a New Nonlinear Gradient Method for Solving Large Scale Convex Optimization Problems with an Application on Arabic Medical Text
Gradient methods have applications in multiple fields, including signal processing, image processing, and dynamic systems. In this paper, we present a nonlinear gradient method for solving convex supra-quadratic functions by developing the search direction, that done by hybridizing between the two conjugate coefficients HRM [2] and NHS [1]. The numerical results proved the effectiveness of the presented method by applying it to solve standard problems and reaching the exact solution if the objective function is quadratic convex. Also presented in this article, an application to the problem of named entities in the Arabic medical language, as it proved the stability of the proposed method and its efficiency in terms of execution time.
READ FULL TEXT