Vandal: A Scalable Security Analysis Framework for Smart Contracts

09/11/2018
by   Lexi Brent, et al.
0

The rise of modern blockchains has facilitated the emergence of smart contracts: autonomous programs that live and run on the blockchain. Smart contracts have seen a rapid climb to prominence, with applications predicted in law, business, commerce, and governance. Smart contracts are commonly written in a high-level language such as Ethereum's Solidity, and translated to compact low-level bytecode for deployment on the blockchain. Once deployed, the bytecode is autonomously executed, usually by a smart contracts can be highly vulnerable to malicious attacks due to deficient programming methodologies, languages, and toolchains, including buggy compilers. At the same time, smart contracts are also high-value targets, often commanding large amounts of cryptocurrency. Hence, developers and auditors need security frameworks capable of analysing low-level bytecode to detect potential security vulnerabilities. In this paper, we present Vandal: a security analysis framework for Ethereum smart contracts. Vandal consists of an analysis pipeline that converts low-level Ethereum Virtual Machine (EVM) bytecode to semantic logic relations. Users of the framework can express security analyses in a declarative fashion: a security analysis is expressed in a logic specification written in the language. We conduct a large-scale empirical study for a set of common smart contract security vulnerabilities, and show the effectiveness and efficiency of Vandal. Vandal is both fast and robust, successfully analysing over 95% of all 141k unique contracts with an average runtime of 4.15 seconds; outperforming the current state of the art tools---Oyente, EthIR, Mythril, and Rattle---under equivalent conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset