VECO 2.0: Cross-lingual Language Model Pre-training with Multi-granularity Contrastive Learning

04/17/2023
by   Zhen-Ru Zhang, et al.
0

Recent studies have demonstrated the potential of cross-lingual transferability by training a unified Transformer encoder for multiple languages. In addition to involving the masked language model objective, existing cross-lingual pre-training works leverage sentence-level contrastive learning or plugs in extra cross-attention module to complement the insufficient capabilities of cross-lingual alignment. Nonetheless, synonym pairs residing in bilingual corpus are not exploited and aligned, which is more crucial than sentence interdependence establishment for token-level tasks. In this work, we propose a cross-lingual pre-trained model VECO 2.0 based on contrastive learning with multi-granularity alignments. Specifically, the sequence-to-sequence alignment is induced to maximize the similarity of the parallel pairs and minimize the non-parallel pairs. Then, token-to-token alignment is integrated to bridge the gap between synonymous tokens excavated via the thesaurus dictionary from the other unpaired tokens in a bilingual instance. Experiments show the effectiveness of the proposed strategy for cross-lingual model pre-training on the XTREME benchmark.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro