VeSoNet: Traffic-Aware Content Caching for Vehicular Social Networks based on Path Planning and Deep Reinforcement Learning

11/10/2021
by   Nyothiri Aung, et al.
0

Vehicular social networking is an emerging application of the promising Internet of Vehicles (IoV) which aims to achieve the seamless integration of vehicular networks and social networks. However, the unique characteristics of vehicular networks such as high mobility and frequent communication interruptions make content delivery to end-users under strict delay constrains an extremely challenging task. In this paper, we propose a social-aware vehicular edge computing architecture that solves the content delivery problem by using some of the vehicles in the network as edge servers that can store and stream popular content to close-by end-users. The proposed architecture includes three components. First, we propose a social-aware graph pruning search algorithm that computes and assigns the vehicles to the shortest path with the most relevant vehicular content providers. Secondly, we use a traffic-aware content recommendation scheme to recommend relevant content according to their social context. This scheme uses graph embeddings in which the vehicles are represented by a set of low-dimension vectors (vehicle2vec) to store information about previously consumed content. Finally, we propose a Deep Reinforcement Learning (DRL) method to optimize the content provider vehicles distribution across the network. The results obtained from a realistic traffic simulation show the effectiveness and robustness of the proposed system when compared to the state-of-the-art baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset