VL-BERT: Pre-training of Generic Visual-Linguistic Representations
We introduce a new pre-trainable generic representation for visual-linguistic tasks, called Visual-Linguistic BERT (VL-BERT for short). VL-BERT adopts the simple yet powerful Transformer model as the backbone, and extends it to take both visual and linguistic embedded features as input. In it, each element of the input is either of a word from the input sentence, or a region-of-interest (RoI) from the input image. It is designed to fit for most of the vision-and-language downstream tasks. To better exploit the generic representation, we pre-train VL-BERT on massive-scale Conceptual Captions dataset with three tasks: masked language modeling with visual clues, masked RoI classification with linguistic clues, and sentence-image relationship prediction. Extensive empirical analysis demonstrates that the pre-training procedure can better align the visual-linguistic clues and benefit the downstream tasks, such as visual question answering, visual commonsense reasoning and referring expression comprehension. It is worth noting that VL-BERT achieved the first place of single model on the leaderboard of the VCR benchmark.
READ FULL TEXT