Voucher Abuse Detection with Prompt-based Fine-tuning on Graph Neural Networks

08/19/2023
by   Zhihao Wen, et al.
0

Voucher abuse detection is an important anomaly detection problem in E-commerce. While many GNN-based solutions have emerged, the supervised paradigm depends on a large quantity of labeled data. A popular alternative is to adopt self-supervised pre-training using label-free data, and further fine-tune on a downstream task with limited labels. Nevertheless, the "pre-train, fine-tune" paradigm is often plagued by the objective gap between pre-training and downstream tasks. Hence, we propose VPGNN, a prompt-based fine-tuning framework on GNNs for voucher abuse detection. We design a novel graph prompting function to reformulate the downstream task into a similar template as the pretext task in pre-training, thereby narrowing the objective gap. Extensive experiments on both proprietary and public datasets demonstrate the strength of VPGNN in both few-shot and semi-supervised scenarios. Moreover, an online deployment of VPGNN in a production environment shows a 23.4 improvement over two existing deployed models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro