Vulnerability analysis of captcha using Deep learning
Several websites improve their security and avoid dangerous Internet attacks by implementing CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart), a type of verification to identify whether the end-user is human or a robot. The most prevalent type of CAPTCHA is text-based, designed to be easily recognized by humans while being unsolvable towards machines or robots. However, as deep learning technology progresses, development of convolutional neural network (CNN) models that predict text-based CAPTCHAs becomes easier. The purpose of this research is to investigate the flaws and vulnerabilities in the CAPTCHA generating systems in order to design more resilient CAPTCHAs. To achieve this, we created CapNet, a Convolutional Neural Network. The proposed platform can evaluate both numerical and alphanumerical CAPTCHAs
READ FULL TEXT