WAKE: Wavelet Decomposition Coupled with Adaptive Kalman Filtering for Pathological Tremor Extraction

11/18/2017
by   Soroosh Shahtalebi, et al.
0

Pathological Hand Tremor (PHT) is among common symptoms of several neurological movement disorders, which can significantly degrade quality of life of affected individuals. Beside pharmaceutical and surgical therapies, mechatronic technologies have been utilized to control PHTs. Most of these technologies function based on estimation, extraction, and characterization of tremor movement signals. Real-time extraction of tremor signal is of paramount importance because of its application in assistive and rehabilitative devices. In this paper, we propose a novel on-line adaptive method which can adjust the hyper-parameters of the filter to the variable characteristics of the tremor. The proposed technique (i.e., WAKE) is composed of a new adaptive Kalman filter and a wavelet transform core to provide indirect prediction of the tremor, one sample ahead of time, to be used for its suppression. In this paper, the design, implementation and evaluation of WAKE are given. The performance is evaluated on two different datasets. One dataset is recorded from patients with PHTs and the other one is a synthetic dataset, developed in this work, that simulates hand tremor under ten different conditions. The results demonstrate a significant improvement in the estimation accuracy in comparison with two well regarded techniques in literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset