Weighted analytic regularity for the integral fractional Laplacian in polygons
We prove weighted analytic regularity of solutions to the Dirichlet problem for the integral fractional Laplacian in polygons with analytic right-hand side. We localize the problem through the Caffarelli-Silvestre extension and study the tangential differentiability of the extended solutions, followed by bootstrapping based on Caccioppoli inequalities on dyadic decompositions of vertex, edge, and edge-vertex neighborhoods.
READ FULL TEXT