WeTS: A Benchmark for Translation Suggestion
Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire documents translated by machine translation (MT) <cit.>, has been proven to play a significant role in post editing (PE). However, there is still no publicly available data set to support in-depth research for this problem, and no reproducible experimental results can be followed by researchers in this community. To break this limitation, we create a benchmark data set for TS, called WeTS, which contains golden corpus annotated by expert translators on four translation directions. Apart from the human-annotated golden corpus, we also propose several novel methods to generate synthetic corpus which can substantially improve the performance of TS. With the corpus we construct, we introduce the Transformer-based model for TS, and experimental results show that our model achieves State-Of-The-Art (SOTA) results on all four translation directions, including English-to-German, German-to-English, Chinese-to-English and English-to-Chinese. Codes and corpus can be found at <https://github.com/ZhenYangIACAS/WeTS.git>.
READ FULL TEXT