Zero-Label Prompt Selection

11/09/2022
by   Chonghua Liao, et al.
0

Natural language prompts have been shown to facilitate cross-task generalization for large language models. However, with no or limited labeled examples, the cross-task performance is highly sensitive to the choice of prompts, while selecting a high-performing prompt is challenging given the scarcity of labels. To address the issue, we propose a Zero-Label Prompt Selection (ZPS) method that selects prompts without any labeled data or gradient update. Specifically, given the candidate human-written prompts for a task, ZPS labels a set of unlabeled data with a prompt ensemble and uses the pseudo-labels for prompt selection. Experiments show that ZPS improves over prior methods by a sizeable margin in zero-label performance. We also extend ZPS to a few-shot setting and show its advantages over strong baselines such as prompt tuning and model tuning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset