Approximately Strategyproof Tournament Rules: On Large Manipulating Sets and Cover-Consistence

06/07/2019
by   Ariel Schvartzman, et al.
0

We consider the manipulability of tournament rules, in which n teams play a round robin tournament and a winner is (possibly randomly) selected based on the outcome of all n2 matches. Prior work defines a tournament rule to be k-SNM-α if no set of ≤ k teams can fix the ≤k2 matches among them to increase their probability of winning by >α and asks: for each k, what is the minimum α(k) such that a Condorcet-consistent (i.e. always selects a Condorcet winner when one exists) k-SNM-α(k) tournament rule exists? A simple example witnesses that α(k) ≥k-1/2k-1 for all k, and [Schneider et al., 2017] conjectures that this is tight (and prove it is tight for k=2). Our first result refutes this conjecture: there exists a sufficiently large k such that no Condorcet-consistent tournament rule is k-SNM-1/2. Our second result leverages similar machinery to design a new tournament rule which is k-SNM-2/3 for all k (and this is the first tournament rule which is k-SNM-(<1) for all k). Our final result extends prior work, which proves that single-elimination bracket with random seeding is 2-SNM-1/3([Schneider et al., 2017]), in a different direction by seeking a stronger notion of fairness than Condorcet-consistence. We design a new tournament rule, which we call Randomized-King-of-the-Hill, which is 2-SNM-1/3 and cover-consistent (the winner is an uncovered team with probability 1).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro