Distributed estimation of principal support vector machines for sufficient dimension reduction

11/28/2019
by   Jun Jin, et al.
0

The principal support vector machines method (Li et al., 2011) is a powerful tool for sufficient dimension reduction that replaces original predictors with their low-dimensional linear combinations without loss of information. However, the computational burden of the principal support vector machines method constrains its use for massive data. To address this issue, we in this paper propose two distributed estimation algorithms for fast implementation when the sample size is large. Both the two distributed sufficient dimension reduction estimators enjoy the same statistical efficiency as merging all the data together, which provides rigorous statistical guarantees for their application to large scale datasets. The two distributed algorithms are further adapt to principal weighted support vector machines (Shin et al., 2016) for sufficient dimension reduction in binary classification. The statistical accuracy and computational complexity of our proposed methods are examined through comprehensive simulation studies and a real data application with more than 600000 samples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset