Reducing Collision Risk in Multi-Agent Path Planning: Application to Air traffic Management

12/08/2022
by   Sarah H. Q. Li, et al.
0

To minimize collision risks in the multi-agent path planning problem with stochastic transition dynamics, we formulate a Markov decision process congestion game with a multi-linear congestion cost. Players within the game complete individual tasks while minimizing their own collision risks. We show that the set of Nash equilibria coincides with the first-order KKT points of a non-convex optimization problem. Our game is applied to a historical flight plan over France to reduce collision risks between commercial aircraft.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro