Sliding Mode Learning Control of Uncertain Nonlinear Systems with Lyapunov Stability Analysis

03/21/2021
by   Erkan Kayacan, et al.
0

This paper addresses to Sliding Mode Learning Control (SMLC) of uncertain nonlinear systems with Lyapunov stability analysis. In the control scheme, a conventional control term is used to provide the system stability in compact space while a Type-2 Neuro-Fuzzy Controller (T2NFC) learns system behavior so that the T2NFC takes the overall control of the system completely in a very short time period. The stability of the sliding mode learning algorithm was proven in literature; however, it is so restrictive for systems without the overall system stability. To address this shortcoming, a novel control structure with a novel sliding surface is proposed in this paper and the stability of the overall system is proven for nth-order uncertain nonlinear systems. To investigate the capability and effectiveness of the proposed learning and control algorithms, the simulation studies have been achieved under noisy conditions. The simulation results confirm that the developed SMLC algorithm can learn the system behavior in the absence of any mathematical model knowledge and exhibit robust control performance against external disturbances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset