A Geometric Nonlinear Stochastic Filter for Simultaneous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) is one of the key robotics tasks as it tackles simultaneous mapping of the unknown environment defined by multiple landmark positions and localization of the unknown pose (i.e., attitude and position) of the robot in three-dimensional (3D) space. The true SLAM problem is modeled on the Lie group of πππΈπ_n(3), and its true dynamics rely on angular and translational velocities. This paper proposes a novel geometric nonlinear stochastic estimator algorithm for SLAM on πππΈπ_n(3) that precisely mimics the nonlinear motion dynamics of the true SLAM problem. Unlike existing solutions, the proposed stochastic filter takes into account unknown constant bias and noise attached to the velocity measurements. The proposed nonlinear stochastic estimator on manifold is guaranteed to produce good results provided with the measurements of angular velocities, translational velocities, landmarks, and inertial measurement unit (IMU). Simulation and experimental results reflect the ability of the proposed filter to successfully estimate the six-degrees-of-freedom (6 DoF) robot's pose and landmark positions. Keywords: Simultaneous Localization and Mapping, nonlinear stochastic observer for SLAM, stochastic differential equations, pose estimator, position, attitude, Brownian motion process, inertial measurement unit, landmarks, features, SDE, SO(3), SE(3), SLAM.
READ FULL TEXT